블로그 이미지
devtang
Instagram : @taebr0 devtaehyeong@gmail.com

calendar

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Notice

2020. 4. 29. 18:06 Raspberry Pi

 

 

 

 

 

 

 

이번 게시물에서는 RaspberryPi 3B+에 Tensorflow 를 이용하여 사전 훈련된 Mobilenet SSDLite_V2를 이용하여 파이카메라로 Object Detection하는 과정을 작성하겠습니다.

 

우선 준비물로는 Picamera와 라즈베리파이만 있으면 됩니다.

 

라즈베리파이 터미널창을 열고 다음과같이 업데이트를 해줍니다.

sudo apt-get update
sudo apt-get upgrade

 

이후 tensorflow 모델을 다운 받을 폴더를 만들어줍니다.

cd Desktop
mkdir tensorflow
cd tensorflow

 저는 Desktop 에 tensorflow1이라고 폴더명을 만들고 터미널로 들어가줬습니다.

wget https://github.com/lhelontra/tensorflow-on-arm/releases/download/v1.8.0/tensorflow-1.8.0-cp35-none-linux_armv7l.whl

 

이제 위와 같은 명령어를 치고 다운받아줍니다. 

 

다운이 완료되면 models라는 폴더가 생성되있습니다.

 

sudo pip3 install tensorflow-1.8.0-cp35-none-linux_armv7l.whl // python3.x버전설치
sudo pip install tensorflow-1.8.0-cp35-none-linux_armv7l.whl

저는 라즈베리파이에 세팅된 기본 파이썬버전이 3.5 라 pip3를 붙혀줄 필요가 없었습니다.

pip3버전으로 까는것을 추천드립니다.

 

텐서플로우가 설치가 완료되고나면, 텐서플로우에 필요한 패키지를 추가로 설치해줘야합니다.

이제부터 pip은 생략하고 pip3로 통일해서 올리겠습니다. 본인 환경에 맞게 설치하시길 바랍니다.

 

sudo apt-get install libatlas-base-dev

sudo pip3 install pillow lxml jupyter matplotlib cython

sudo apt-get install python-tk

추가적으로 OpenCV도 설치해줘야하는데 Jetson nano가 라즈베리와같이 우분투 환경이기에 똑같이 진행해주시면 됩니다.

 

(아래 게시물 참고바랍니다.)

https://ultrakid.tistory.com/10

 

[OpenCV] Jetson nano에 OpenCV 3.4 설치

제 나노 보드에 설치된 Jetson Nano Developer Kit image, CUDA 10.0, Jetpack 4.3 버전 기준으로 작성하였습니다. 우선 OpenCV 설치 전에 필요한 라이브러리 들을 설치해줍니다. (참고) - pkg-config나 unzip 또..

ultrakid.tistory.com

sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev

sudo apt-get install libxvidcore-dev libx264-dev

sudo apt-get install qt4-dev-tools

pip3 install opencv-python

OpenCV 설치시에 굉장히 오래걸리기도 하고, 발열이 심하니 설치후에 꼭 라즈베리파이를 쉬게 해주세요..

 

이제 구글의 프로토콜 버퍼를 이용할 준비를 해야합니다.

https://developers.google.com/protocol-buffers

 

Protocol Buffers  |  Google Developers

Protocol buffers are a language-neutral, platform-neutral extensible mechanism for serializing structured data.

developers.google.com

이것을 이용하면 데이터를 한 번 구성하는 방법을 정의한 후 특수 생성 된 소스 코드를 사용하여 다양한 데이터 스트림에서 다양한 언어로 다양한 구조의 데이터를 쉽게 읽고 쓸 수 있다고 합니다. .proto파일을 생성하여  응용 프로그램 언어에 대한 프로토콜 버퍼 컴파일러를 실행하여 데이터 액세스 클래스를 생성한다고 하는데, 이것을 이용하면 더 작고 빠르게 읽을 수 있어서 라고 합니다.

 

명령어를 입력해줍니다. 

sudo apt-get install autoconf automake libtool curl

이 다운로드는 참고로 만들어준 tensorflow 폴더에서 진행해주세요.

wget https://github.com/protocolbuffers/protobuf.git // protocol buffer 받아오기

tar -zxvf protobuf-all-3.6.0.tar.gz // 압축풀어주기

cd protobuf-3.6.0 // 폴더로 진입

 

 

./configure

./configure를 해주면 대략 2분정도걸립니다.

 

make

make는 진짜 더더 오래걸립니다.. 저는 한시간정도 걸린 것 같습니다.

make check

이건 리얼 더더더 오래걸렸던거 같습니다. 참고로 하다가 라즈베리파이가 먹통됬는데, 먹통된 사람들은 전원을 끄고 

다시 켜준다음에 다시 make check 진행해주시면 위와같은 화면이 나오면 올바르게 컴파일 된겁니다.

저는 먹통이되서 다시 켜고 컴파일시켜 2시간 넘게 걸렸습니다.

sudo make install

위와같은 명령어를 쳐서 설치합니다.

cd python  // @@@@ python 폴더로 꼭 들어가주세요 @@@@

export LD_LIBRARY_PATH=../src/.libs

python3 setup.py build --cpp_implementation

python3 setup.py test --cpp_implementation

python3 setup.py build --cpp_implementation

 

python3 setup.py test --cpp_implementation

sudo python3 setup.py install --cpp_implementation

계속계속 진행해 줘요.

 

export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp

export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION=3

sudo ldconfig

sudo ldconfig 치면 위와 같이 나옵니다.

이제 설치가 거의 완료됬습니다. 재부팅 전에 실행하면 텐서플로우 오류가 뜨니 반드시 재부팅을 해줍니다.

sudo reboot now

 

재부팅이 완료가 되면 Desktop에다 tensorflow1 이라고 폴더를 만들어주어 그안에 들어가줍니다.

cd Desktop

mkdir tensorflow1

cd tensorflow1

아래 명령어를 입력해주면 위와 같은 이미지처럼 다운로드가 진행됩니다~!!

git clone --recurse-submodules https://github.com/tensorflow/models.git 

설치가 완료되면 

이다음부터 조금 중요한데,

sudo nano ~/.bashrc

위의 명령어를 입력해주면

아래와 같은 GNU 창이 뜹니다. 커서를 맨아래로옮겨 아래 코드를 적고 Ctrl + X -> Y 를 눌러 저장하고 나옵니다.

export PYTHONPATH=$PYTHONPATH:/home/pi/tensorflow1/models/research:/home/pi/tensorflow1/models/research/slim

echo $PYTHONPATH 를치면

위와같이 우리가 입력한 주소가 나옵니다. 위와 같이 나오면 성공적으로 진행된것입니다.

 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

 

tensorflow/models

Models and examples built with TensorFlow. Contribute to tensorflow/models development by creating an account on GitHub.

github.com

이제 실행을위해 pre-trained 된 모델을 다운 받아옵니다. 저는 Mobilenet ssdlite V2 버전을 이용하겠습니다.

wget http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz

 

다운로드가 완료되면 아래 명령어를 입력하여 압축을 풀어줍니다.

tar -xzvf ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz

다시 models파일안에 research 폴더안으로 들어와서 명령어를 입력해줘야 합니다.

protoc object_detection/protos/*.proto --python_out=.

이명령어를 입력한후 폴더안에 파일을보시면 파이썬 파일들이 proto파일들로 변환되서 저장되어있습니다. 구글 프로토콜 버퍼를 사용할 준비가 완벽하게 됬습니다!

 

 

이제 object_detection 폴더 안으로 들어와서 테스트할 파이썬 파일을 받아옵니다.

라즈베리카메라를 이용한 객체인식 예제 코드 파일입니다.

wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi/master/Object_detection_picamera.py

python3 Object_detection_picamera.py

받아와서 python으로 실행을 시키면 tensorflow가 꽤 많이 메모리를 잡아먹기 때문에 시간이 조금 걸립니다.

 

아래는 구현 동영상입니다.

https://youtu.be/rLK-y8ePueQ

 

 

참고사이트

https://youtu.be/npZ-8Nj1YwY

 

=======================================================================

posted by devtang
2020. 3. 27. 17:40 AI/Keras

앞 게시물에 사용한 Dense는 fully-connected(FC) layer로써 1차원 배열 데이터로 한정됩니다. 

그러나 컬러 사진 1장은 3차원 배열 데이터이기 때문에 FC신경망을 이용하여 사진을 학습시키기 위해서는

3차원 데이터를 1차원 데이터로 평면화 시켜서 학습 시켜줘야합니다.

 

따라서 신경망이 추출 및 학습시에 굉장히 비효율적이고 정확도를 높이는 데 한계가 있을 수 밖에 없습니다.

이미지 공간 정보를 유지한 상태에서 학습을 시킬 수 있는 모델이 바로 CNN(Convolutional Neural Network)입니다.

 

CNN의 구조

Convolution 신경망은 이미지가 가지는 특성이 고려되어 설계된 신경망이므로 영상 처리에 주로 사용됩니다.

CNN의 구조는 위의 그림과 같이 그림에 한 필터가 순회적으로 돌며 합성곱을 계산하여 그 결과로 하나의

피쳐맵을 형성합니다. 

Convolution 과정

합성곱을 함으로써 얻게되는 효과는 아래 사진을 보면 쉽게 이해할 수 있습니다.

왼쪽에 숫자 30으로 이루어진 부분을 따라 그려보면 오른쪽의 그림과 거의 비슷한 모양입니다.

사진이 픽셀 데이터로 구성되어있음을 알 수 있습니다.

 

 

Polling 은 컨볼루션 레이어의 출력 이미지에서 합성곱을 계산하여 주요값을 뽑아 크기가 작게 출력하여 만듭니다.

아래의 그림을 보시면 4X4의 map에서 2X2 네칸으로 나눌수 있는데 각 칸의 최고 크기의 숫자를 뽑아서 2X2로 resize한 모습입니다.

 

본래 신경망은 인간의 신경계를 모사한 것인데 뉴런이 큰 신호에 반응하는 것과 유사합니다.

주요값을 뽑아서 resize시키는 max pooling을 거치면 노이즈 감소, 속도 증가, 영상의 분별력 강화등이 이점이 있습니다.

 

CNN은 overfitting(너무 학습시켜서 오히려 역효과가 발생하는 현상)을  방지할 수 있습니다.

 

keras에서 CNN을 이용하여 손글씨를 학습해보도록 하겠습니다.

from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

컨볼루션 레이어중 Conv2D 레이어를 사용했습니다. 영상인식에 주로 사용되는 레이어입니다.

 

Conv2D(32, (3,3) , activation ='relu', input_shape=(28,28,1))

32 : 컨볼루션 필터의 수 입니다.

(3,3) : 컨볼루션 커널의 행열입니다.

활성화 함수로는 'relu'를 이용하였습니다. 

input_shape=(28,28,1) : 입력값을 28X28 로 주었고, 흑백 사진인 채널1을 사용하였습니다.

 

MaxPooling2D(2,2) : 축소 비율을 2,2로 지정하였습니다.

 

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

Convolution과 MaxPooling 과정을 거쳤으니 주요 특징들만 추출 되었을 것입니다. 

추출된 주요 특징은 전결합층(Fully-connected)에 전달되어 학습됩니다. 위의 컨볼루션과 풀링의 과정은 2차원 자료를 다루지만 전결합층에 전달하기 위해선 1차원 자료로 바꿔줘야 합니다. Flatten의 원리는 아래의 사진과 같은 느낌입니다.

model.summary()

model.summary()를 이용하여 출력타입을 확인할 수있는데

 

conv2d_9 (Conv2D) (None,3,3,64) 에서

flatten_3 (Flatten) (None,576) 으로 바뀌었습니다.

 

즉 flatten 과정을 거쳐 3X3X64 = 576576으로 평탄화 되어 두개의 Dense층으로 들어갔습니다.

 

from keras.datasets import mnist
from keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

 

학습할 데이터와 테스트할 데이터 셋을 설정했습니다. 

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=64)
test_loss, test_acc = model.evaluate(test_images, test_labels)

모델을 컴파일 설정 후 테스트를 진행하는 과정입니다.

CNN을 이용한 손글씨셋 인식의 정확도는 0.9929정도 나왔습니다.

 

참고사이트

----------------------------------------------------------------------------------------------------------------------------------

https://bskyvision.com/412

 

딥러닝 알고리즘의 대세, 컨볼루션 신경망(convolutional neural network, CNN)

인공지능이 핫하다. 핫한지 벌써 오래다. 인공지능이 발전하게 된 계기는 크게 세가지로 볼 수 있다. 딥러닝 알고리즘의 발전. 데이터량의 폭발적인 증가. GPU의 발전. 딥러닝 알고리즘은 가장 간단한 피드포워드..

bskyvision.com

https://sonofgodcom.wordpress.com/2018/12/31/cnn%EC%9D%84-%EC%9D%B4%ED%95%B4%ED%95%B4%EB%B3%B4%EC%9E%90-fully-connected-layer%EB%8A%94-%EB%AD%94%EA%B0%80/

 

CNN을 이해해보자. fully connected layer는 뭔가

*본 글은 개인 공부를 위해 복사 및 인용한 글들의 출처를 명시하고 적는 글입니다. 무단 도용 및 인용으로 인한 책임은 지지 않습니다. ​ 요즘 귀차니즘에 빠졌어요. 펜으로 적기 귀찮아서 제가 찾아본 내용들은 시간 순으로 쭉 정리해서 블로깅 하려고 합니다. 머리에서 필요하다고 생각하는 거를 바로바로 찾는 과정이라 많이 두서가 없을 수 있습니다 . 존댓…

sonofgodcom.wordpress.com

https://github.com/AhnSungJoo

 

AhnSungJoo - Overview

Machine Learning & Blockchain & Quant . AhnSungJoo has 34 repositories available. Follow their code on GitHub.

github.com

 

posted by devtang
2020. 3. 26. 17:47 AI/Keras

이번 게시물에서는 Keras를 이용하여 손글씨  데이터셋을 불러와서 모델 구성 및 학습하여 Keras의 간단한 기초과정을 이해하는 게시물입니다.

 

MNIST란 이미지 데이터 셋으로 사람이 직접 쓴 글씨체 0~9까지의 이미지들로 구성되어있습니다.

케라스 데이터셋 라이브러리를 이용하여 쉽게 훈련용 이미지를 load할 수 있습니다.

 

Windows10 환경에서 진행하였으며 기본 세팅 과정은 아래의 블로그에서 참조해주세요.

https://like-edp.tistory.com/3

 

Anaconda(아나콘다) 에서 Keras(케라스) 설치하기

반갑습니다. 이번 글에서는 아나콘다를 사용하여 케라스까지 설치해보는 작업을 진행하도록 하겠습니다. 아나콘다는 일반적으로 정말 다양한 라이브러리 패키지들을 모아놓은 소프트웨어인데, Python을 포함해 연..

like-edp.tistory.com

우선 keras 모듈을 import 하여 훈련에 필요한 손글씨 데이터 셋을 불러옵니다.

import keras
from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

딥러닝 모델을 학습하기 위해 train 과 test 2가지로 나눕니다.

train 은 훈련시킬 데이터이고 test는 훈련시킨 모델의 테스트용 데이터 입니다.

_images는 숫자 이미지의 정보이며 _label은 숫자 이미지의 이름입니다.

 

print(train_images[0])

import matplotlib.pyplot as plt
plt.imshow(train_images[0])
plt.show()

 

 

이미지데이터를 출력시켜 보았습니다. 출력시켜보면 배열안에 0~255 숫자 픽셀 데이터로 구성 되어있는 것을 알 수 있습니다. 추가적으로 matplotlib를 import 하여 train_images[0] 의 사진을 불러왔습니다.

 

print(train_images.shape)
print(len(train_labels))
print(train_labels)

print(test_images.shape)
print(len(test_labels))
print(test_labels)

train_image와 test_image 를 shape 명령어를 사용하여 각각의 배열 데이터의 크기를 확인할 수 있습니다.

print(train_images.shape) 

(60000,28,28)

60000 : 갯수가 6만개라는 뜻입니다.

28,28 : 하나의 배열은 28X28 로 이루어져 있습니다.

 

print(len(train_labels))

60000

train_labels 의 데이터의 길이가 60000이라는 뜻입니다.

 

이제 데이터 셋 성분을 보았으니 이 데이터들을 Normalize해줘야합니다.

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

reshape 로 출력 데이터를 같은 양식으로 통일하고 astype를 이용하여 픽셀값이 0~255사이 값이므로 255로 나누어 데이터를 0~1까지의 숫자로 변환합니다.

 

이미지 데이터들을 전처리 해주었으니  라벨 데이터 역시 One-hot encoding으로 변환 해줍니다.

 

One-hot encoding 이란?

표현하고 싶은 단어의 index에는 1의 값을 부여하고 , 다른 인덱스에는 0을 부여하는 표현 방식입니다.

print (train_labels[:10])
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
print (train_labels[:10])

train_labels 을 인코딩전에 출력하면

[ 5 0 4 1 9 2 1 3 1 4 ]

이렇게 표현이됩니다.

5를 encoding 한 결과값입니다.

[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

배열 index (0~9)중 여섯번째가 5입니다. 정수 5 위치의 값이 1이며, 나머지값은 0으로 표현하게됩니다.

 

이제 데이터셋의 생성이 모두 완료되었습니다. 다음 단계는 모델을 구성하여 학습준비를 해야합니다.

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

models과 layers 를 import하여 Sequential()함수를 이용합니다.

이때 Dense 레이어를 이용하는데

Dense() 함수에 들어가는 인자는 다음과 같습니다.

 

Dense(512, activation='relu', input_shape=(28*28))

*512 는 출력 뉴런의 수를 설정합니다.

*input_shape 는 입력 뉴런의 수를 설정합니다. (행,열,채널 수) 로 구성됩니다.

*activation='relu' 

*relu : (ReLU, Rectified Linear Unit), 은닉층(hidden layer) 에서 주로 사용하는 활성화 함수입니다.

*softmax : 입력받은 값을 출력으로 0~1사이의 값으로 모두 정규화하며 출력 값들의 총합은 항상 1이 되는 특성을 가진 함수 입니다. 

 

이 게시물에서 구하고자 하는 문제는 입력 이미지가 주어졌을 때 0~9 까지 각 숫자와 얼마나 비슷한지에 대한 확률을 구하는 것입니다. 숫자 9를 인식하려는데 예를들어 9일확률 80%, 8일확률 5% 로 다른 숫자에 대해서 낮은 확률로 인식할 수 있습니다. 

 

network.add를 이용하여 두 개의 Dense 계층을 연속적으로 추가하며, 합계가 1이 되는 10개의 확률 점수의 배열을 반환합니다. 각 점수는 현재의 숫자 이미지가 10개 숫자 분류 각각에 속할 확률입니다.

 

 

network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

이제 .compile을 이용하여 학습하기전 설정을 합니다.

optimizer = 학습속도를 빠르고 안정적으로 하는 원리를 말합니다.

'Adam' , 'SGD', 등 다양한 알고리즘이 있지만 여기서 수행할 'rmsprop'은 각각의 가중치에 맞춰 학습률을 제어하는 기법입니다. 이 알고리즘은 학습률을 최근에 갱신된 가중치 기울기의 평균으로 나누는 방법입니다.

metrics 는 'accuracy' 를 이용하였으며 이는 훈련 및 시험 중에 모니터링할 측정값입니다.

 

이제 컴파일도 완료 되었으니 fit()함수를 이용하여 학습을 진행해보도록 합시다.

network.fit(train_images, train_labels, epochs=5, batch_size=128)

epochs 는 학습횟수를 의미합니다. 5를 입력하였으니 총 5번 학습을 반복합니다.

batch_size 는 몇번 학습해보고 해답을 맞출 건지 의미합니다. 즉 , 한번에 128개씩 훈련하는 것입니다.

 

test_loss, test_acc = network.evaluate(test_images, test_labels)
print('test_acc:', test_acc)

학습할때의 훈련셋 검증셋의 손실 추이를 보기위한 코드입니다.

위의 사진을 보시면 총 5번 학습 진행하였으며 70000장의 사진중 60000장이 훈련에 사용됬으며 10000장이 검증셋으로 사용되어 테스트 정확도가 0.977로 나타났습니다.

 

참고사이트

https://keras.io/ko/optimizers/#_1

 

Optimizers - Keras Documentation

옵티마이저의 사용법 옵티마이저는 Keras 모델을 컴파일하기 위해 필요한 두 개의 매개변수(parameter) 중 하나입니다. from keras import optimizers model = Sequential() model.add(Dense(64, kernel_initializer='uniform', input_shape=(10,))) model.add(Activation('softmax')) sgd = optimizers.SGD(lr=0.01, de

keras.io

https://tensorflow.blog/4-%ED%85%90%EC%84%9C%ED%94%8C%EB%A1%9C%EC%9A%B0-%EC%8B%B1%EA%B8%80-%EB%A0%88%EC%9D%B4%EC%96%B4-%EB%89%B4%EB%9F%B4-%EB%84%A4%ED%8A%B8%EC%9B%8C%ED%81%AC-first-contact-with-tensorflow/

 

4. 텐서플로우 단일 레이어 뉴럴 네트워크 – First Contact with TensorFlow

이 글은 스페인 카탈루냐 공과대학의 Jordi Torres 교수가 텐서플로우를 소개하는 책 ‘First Contack with TensorFlow’을 번역한 것입니다. 이 글은 원 도서의 라이센스(CC BY-NC-SA 3.0)와 동일한 라이센스를 따릅니다. 파이썬 3  notebook으로 작성한 이 섹션의 코드는 여기에서 보실 수…

tensorflow.blog

 

posted by devtang
2020. 3. 11. 16:58 개인 프로젝트

*2020년도 10월 교내 캡스톤경진대회 제품제작에 성공하였습니다

youtu.be/OwrC1YFvGH0

 

 

마스크 학습관련내용은 아래 게시물에 있습니다.

https://ultrakid.tistory.com/15

 

[Windows] 마스크 착용 유/무 판단을 위한 YOLO 학습

요즘 코로나 바이러스로 인해 전세계가 혼란입니다. 그래서 마스크를 착용하지 않으면 주변 사람에게 피해가 가니 항상 착용하도록 합시다!! 다름이 아니라 연구실에서 공부겸 간단한 개인 프��

ultrakid.tistory.com

코로나 바이러스로 요즘 전세계적으로 혼란인 가운데,

마스크를 착용하지않으면 상대적으로 타인에게 불안감을 조성할 우려가 있어서

마스크를 착용했을때 문이 열리게 되는 프로젝트를 만들었습니다.

개인적으로 시간이 날때마다 짬짬히 만들어보았습니다.

우선 구현 영상입니다.

https://youtu.be/fcFa_WhXNIo

 

 

라즈베리파이와 컴퓨터간 실시간 소켓 통신을 이용하였으며

컴퓨터에서는 YOLO를 이용한 마스크 착용 인식, 라즈베리에서는 소켓으로 통신받아 GPIO를 제어하였습니다.

 

HC-SR04 초음파센서

우선 사람이 문앞에 있다고 가정하기 위해 초음파센서를 이용하였습니다.

라디오 같이 생긴 이 센서는 송신부인 Trigger와 수신부인 Echo로 나뉘어있는데 송신부에서 초음파를 발사하면 물체에 부딪쳐 나오는 진동을 Echo에서 받은 시간을 이용하여 거리를 측정하는 방식입니다.

이 센서는 최대 4m까지 거리측정이 가능합니다.

 

 

 라즈베리파이와 브레드보드를 이용하여 연결해놓고 잘 작동하는지 테스트해봤습니다.

 LED는 초음파센서와 물체와의 거리가 100cm 이하로 일정 count동안 존재할때 켜지도록 해놨습니다.

 

 서보모터는 SG-90을 이용했으며 서보모터에 나무젓가락 세개를 테이프로 이어붙혀서 만들었습니다.

 출입문 역할로 만들었으며, 마스크를 쓰면 서보모터를 회전시켜 지나갈 수 있도록 만들었습니다.

 이제 남은건 윈도우 환경에서 인식한 결과를 라즈베리에 전송시켜 마스크를 썼을때 서보모터가 움직이게

 두가지를 합쳤습니다.

 

YOLO의 darknet 소스코드찾다 image_opencv.cpp 파일에서 class를 검출하는 소스코드를 찾아냈습니다.

/*********************************************INSERT CODE LINE*******************************************************/
if (strcmp(detectname, names[j]) != 0)
	{
		fp = fopen("***TXT파일위치***", "w");
		fwrite(names[j], strlen(names[j]), 1, fp);
		fclose(fp);
	}
/*********************************************INSERT CODE LINE*******************************************************/

제가 추가한 소스코드입니다. names[j]에 인식된 class의 이름이 저장되있습니다.

TXT파일을 fopen 함수를 이용하여 열어서 fwrite 함수로 TXT파일에 검출된 class를 적게 구현했습니다.

이제 소켓으로 class name을 보내기만 하면 됩니다.

 

윈도우 소켓 코드중 일부입니다.

while (1) 
	{
		fp = fopen("***TXT파일 위치***", "r"); //YOLO에서 검출된name을 적은 TXT파일 열기
		fscanf(fp, "%s", message); // 문장을 복사
		fclose(fp); // 파일닫기
		if (strcmp(message, pre_message) == 0)
			continue;
		else {
			strcpy(pre_message, message);
			printf("SEND : %s\n", pre_message); 
			send(hSocket, message, sizeof(message) - 1, 0); //send를이용하여 라즈베리로 전송
			
		}

	}

 

YOLO와 소켓을 둘다 실행시켜놓고 소켓은 계속 텍스트를 읽어서 보내주기만 합니다.

 

라즈베리파이에서 GPIO를 다루는 코드 중 일부입니다.

if distance <= 100: # *초음파센서와 물체간 거리가 100cm 이하일때
			f = open("라즈베리파이 TXT파일 위치",'r') #윈도우에서 받은 name을 읽기
			read_yolo = f.readline() # read_yolo 변수에 문장을 복사
			f.close()
			right = 'MASK'	
			count += 1 # count가 증가함 
			if count >= 4 and read_yolo == right: # count가 4이상 and 'MASK'라는 name을 받게되면
				# print(2)
				p.ChangeDutyCycle(12) # 서보모터를 올림
				time.sleep(1)
				GPIO.output(LED, GPIO.HIGH) # LED를 켬
				time.sleep(2)	
				p.ChangeDutyCycle(7.5) # 2초후 서보모터를 내림
				time.sleep(1)
				count = 0 # count를 0으로 초기화
				GPIO.output(LED,GPIO.LOW) # LED를 끔
			
			else: # 마스크를 쓰지 않으면 서보모터를 제어하지 않는다.
				continue

일정시간동안 출입문 앞에서 마스크를 끼고 있지 않은 상태로 서있으면 야속하게 문이 열리지 않습니다.

간단하게 GPIO를 제어하여 마스크 착용시에만 문이 열리는 시스템을 만들어 봤습니다.

나중에 추가적으로 소스 코드 수정 및 기능을 개선,추가하여 더 좋은 퀄리티로 만들어 보고 싶습니다.

 

 

posted by devtang
2020. 3. 10. 15:48 AI/YOLO

=========수정 ==========

마스크 착용 여부를 이용하여 교내 경진대회의 출전한 UCC영상입니다. 

youtu.be/OwrC1YFvGH0

========================

요즘 코로나 바이러스로 인해 전세계가 혼란입니다.

그래서 마스크를 착용하지 않으면 주변 사람에게 피해가 가니 항상 착용하도록 합시다!!

다름이 아니라

연구실에서 공부겸 간단한 개인 프로젝트를 진행해보고 있습니다. 시국이 시국인지라 마스크를 착용해야 문이 열리는 그런 시스템을 만들어보고자 하는데 착용 유무를 판단하기 위하여 YOLO를 이용하기로 했습니다.

 

class는 2가지로, 마스크를 쓴사람, 안쓴사람으로 나눠 학습했습니다. YOLO_MARK를 이용하여 라벨링 작업하였습니다.

Windows에서 학습을 진행하였으며, 컴퓨터환경은 인텔 CPU i5-6600 3.30Ghz ,NVIDIA GeForce GTX 1050 Ti 입니다.

 

 마스크를 쓴얼굴 500장, 안쓴얼굴 500장 정도 모아서 수동으로 라벨링 작업을 진행했습니다.

사실 딥러닝 학습시에 class당 500장의 사진은 굉장히 소량입니다. 추후에 더 괜찮은 아이디어가 생기면 

더 기능을 추가할 예정입니다. 연구실에서 간단한 프로젝트로 학습겸 진행해보았습니다.

 

이미지를 라벨링 하게되면 txt파일이 생기는데 파일 안에는 class num와 각 사진의 라벨을 딴 좌표값이 들어있습니다.

참고로 이미지는 크롤링을 이용하여 구글에서 사진을 뽑아서 학습에 이용가능한 사진 500장씩만 분류했습니다.

 

정상적으로 확인이 되고있습니다.

 

123: 0.814543, 1.045863 avg loss, 0.001000 rate, 5.422000 seconds, 7872 images

 

123: 현재 훈련/Batch 를 몇번 반복했는지 나타냅니다.

0.814543 : 총 손실을 나타냅니다.

1.045863 avg : 평균 손실 오차로써 최대한 낮을때까지 학습을 시켜줘야합니다. 보통 저는 0.020000정도 아래로 내려가면 학습을 중지 시킵니다.

0.001000 rate : cfg 파일안에 정의된 학습 속도 비율을 나타냅니다.

5.422000 seconds : 1batch를 학습시키는데 소요된 시간을 나타냅니다.

7872 images : 지금까지 학습에 사용된 이미지의 총갯수를 나타냅니다.

 

위의 사진은 학습한지 얼마 안됬을때 캡쳐한 사진입니다. 20000번 넘게 학습시켜본결과 제 컴퓨터로는 하루좀 넘게 켜뒀던 것 같습니다.

 

위의 사진은 약 2만 2천번 학습시켰을때 나타난 학습곡선으로 이정도로 학습된 weights 파일로 구동시켜봤습니다.

 

아래는 구현 사진과 동영상 입니다.

 

30fps정도 나오며 인식률도 500장의 데이터 치고는 양호합니다.

마스크를 꼈을때, Mask 93% 정도로 인식합니다.

 

마스크를 벗게되면, 마스크를 착용하지 않은 class이름을 NO_MASK로 정의했습니다.

역시 90%이상으로 인식합니다.

 

 

 

추가적으로 라즈베리파이GPIO와 소켓통신을 이용하여 마스크를 끼지 않았을때 출입을 하지 못하도록 막는 시스템을 구현할 예정입니다.

감사합니당. 

'AI > YOLO' 카테고리의 다른 글

[YOLO] 윈도우 버전 YOLOv3 설치 Guideline  (35) 2020.07.22
YOLO 학습시 cfg 파일 설정(anchors)  (3) 2020.03.20
posted by devtang
2020. 2. 28. 23:57 Jetson Nano

현재 Jetson nano에 깔려있는 CUDA 10.0 , JetPack 4.3 , OpenCV 3.4 버전을 기준으로 작성하였습니다.

 

 

 

YOLO ?

YOLO(You Only Look Once)는 이미지 내의 bounding box와 class probability를 single regression problem으로 간주하여, 이미지를 한 번 보는 것으로 객체의 종류와 위치를 추측합니다. 아래와 같이 single convolutional network를 통해 multiple bounding box에 대한 class probablility를 계산하는 방식입니다.

YOLO의 대한 자세한 원리와 설명은 아래 사이트를 참조해주세요.

 

https://github.com/zeuseyera/darknet-kr/blob/master/2_YOLO/yolo.md

 

 

zeuseyera/darknet-kr

:kr: 다크넷(darknet): C로 작성한 신경망 공개소스. Contribute to zeuseyera/darknet-kr development by creating an account on GitHub.

github.com

 

 

우선 YOLO 버전으로는 크게 두가지가 있습니다.

 

https://pjreddie.com/darknet/

 

Darknet: Open Source Neural Networks in C

Nightmare Use Darknet's black magic to conjure ghosts, ghouls, and wild badgermoles. But be warned, ye who enter here: no one is safe in the land of nightmares.

pjreddie.com

https://github.com/AlexeyAB/darknet

 

AlexeyAB/darknet

Windows and Linux version of Darknet Yolo v3 & v2 Neural Networks for object detection (Tensor Cores are used) - AlexeyAB/darknet

github.com

라즈베리파이나 젯슨 나노 보드에서 AlexeyAB 버전이 원활히 구동되는 것을 확인했습니다. 

두 버전의 차이는 알아보니 pjreddie버전이 원래 yolo v3의 저자가 만든 버전이고, AlexeyAB버전은 

아직까지도 활발한 업데이트를 하고 있으며 연구 목적(학습할때 mapping,손실율 등) 을 알 수 있습니다.

저는 AlexeyAB버전으로 설치하였습니다.

 

우선 기본적으로 업데이트를 한번 진행해줍니다.

sudo apt-get update
sudo apt-get upgrade

또한 YOLO는 실시간 객체인식 시스템 중 하나로 꽤 무겁기 때문에 GPU를 이용하여 돌려야 합니다.

Jetson nano는 초기 OS설치시에 CUDA가 기본적으로 설치가 되어 있기 때문에 설치할 필요가 없으며

경로만 export해줍니다. 

export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}

export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

 

darknet 을 받아줍니다.

git clone https://github.com/AlexeyAB/darknet

cd darknet

wget https://pjreddie.com/media/files/yolov3.weights

darknet에서는 coco data(COCO: Common Object in COntext)와 학습해 놓은 weights 파일을 제공하고 있는데, 

약 80개정도 사물을 학습해놓았습니다. 기본 제공해주는 데이터 파일로써, YOLO를 처음 접했을때 돌려보는 가장 기본적인 demo정도로 생각하면 됩니다. 추가적으로 Tensorflow Lite버전처럼 경량화된 샘플인 yolov3-tiny.weights 파일도 설치해주면 좋습니다.

wget https://pjreddie.com/media/files/yolov3-tiny.weights

이제 YOLO를 build하기 위해 Makefile을 vi 명령어를 통해 약간 수정해줍니다.

sudo vi Makefile

들어가면

GPU=1
CUDNN=1
OPENCV=1

이 세개부분이 원래 0으로 되어있으므로, 위에 사진처럼 1로 바꿔줍니다. 0쪽으로 방향키버튼을 통해 이동후 

s 버튼을 눌러 1로 변경후 ESC, 방향키버튼으로 이동후 s 버튼을 눌러 1로 변경후 ESC를 해줍니다.

 

*vi 명령어 

 

 

변경이 완료됬으면 Shift + ; ( : 콜론)누르고 wq! (쓰고 나가기) 를통해 vi창을 나갑니다.

명령어창으로 돌아와서 컴파일을 진행합니다.

make

이제 YOLO 설치는 끝이 났습니다. 정상적으로 설치되었는지 구동해보도록 하겠습니다.

 

간단한 사진예제 먼저 구동해보겠습니다.

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

tiny 버전으로 구동하고 싶다면 아래 명령어를 입력해줍니다. lite한 버전이라 위의 명령어보다 처리속도가 빨라요.

./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg

개와 자전거,트럭이 인식이 잘되는 것을 볼 수 있습니다.

사진이 정상적으로 인식 되는것으로 보아 YOLO가 잘 설치된 것 같습니다.

 

YOLO는 웹캠을 통해 출력되는 영상을 실시간으로 인식할 수 있습니다.

숫자 0으로 실행이 안되면 1로 바꿔서 해주시면 됩니다.

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 0

마찬가지로 tiny 버전으로 구동하고 싶으면 아래 명령어를 입력해줍니다. 

./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -c 0

웹캠으로 실시간 인식한 구동 영상입니다.

 

tiny 버전으로 구동

위의 동영상은 tiny버전으로 GPU사용하여 구동하였습니다. 13~14 프레임으로

평균 10프레임 초중반대를 뽑아내줍니다. 일반yolov3.weight파일로 진행시 1~4프레임 정도밖에 안나오는데

라즈베리파이에서는 엄두도 못내는 실시간 인식을 꽤 괜찮은 성능으로 구동시켜주네요..

 

지금까지 YOLO의 기본 설정방법 및 예제 실행에 대해 글을 작성해 보았습니다.

서투른 글 읽어주셔서 감사합니다.

 

참고사이트)

*YOLO를 처음 접할때 어려웠던 부분이 많은데 몇년전 게시물임에도 불구하고 꾸준히 댓글로 질문들에 답변해주시고 계십니다. 

https://pgmrlsh.tistory.com/

 

개발자 이상현

Instagram:sh_lee77 머신비전, YOLO, 영상처리, Deep Learning, 딥러닝

pgmrlsh.tistory.com

 

'Jetson Nano' 카테고리의 다른 글

[OpenCV] Jetson nano에 OpenCV 3.4 설치  (0) 2020.02.28
[NVIDIA]Jetson nano OS 설치  (8) 2020.02.28
posted by devtang
2020. 2. 25. 16:24 개인 프로젝트

 

연구실에서 개인적으로 진행해본 프로젝트 데모영상입니다.

 

출입알림시스템 데모 영상

 

 

계획하게된 계기

우선 저는 대학교 학부생으로 정보통신공학전공 연구실에 들어왔습니다.

라즈베리파이와 우분투 환경에대해 공부하던중에 ㅎㅎㅎ

교수님이 출입하시면 게임하다 걸리면 혼날거같아서 ㅎㅎㅎ

YOLO를 이용하여 연구실 인원 얼굴을 학습하여 출입시 누군지 인식하고 음성으로 알림 해주는 프로그램을 만들 계획을 짜게 되었습니다.

 

출입알림 시스템을 만들기 위해서 제가 간단히라도 공부했던 내용을 정리해보면

 

● YOLO 학습 ( 머신러닝의 원리, 데이터 학습원리 및 방법 )

● 라즈베리파이 

● OpenCV를 이용한 영상처리 기법

● TCP/IP 소켓 프로그래밍

● 카카오API, 구글 API를 활용한 TTS(Text to Speech), STT(Speech to Text)

 

2학년이 막 끝난 시점에 연구실에 처음 들어오게된 저로써는 , 처음에 그냥 공부하려니

되게 낯설었지만, 작은 프로젝트 하나라도 제대로 구현해보자 하는 마음으로 프로젝트에 

쓰일만한 내용을 학습했습니다.  특히~ 소켓 잡을때는 진짜 하기 싫었네요 ㅎㅎ

 

아무튼 어느정도 공부하면서 확실한 계획을 세웠습니다.

 

1단계 : 연구실 내의 모든 사람들의 얼굴을 학습한 후 실시간 감지 확인

 

 

첫번째로, 우리의 얼굴을 학습시킨후, 정상적으로 인식이 되는지 확인하였습니다.

 

YOLO는 Ubuntu환경에서 구동하였고, 1인당 1300~1400장의 얼굴 데이터를 학습시켰습니다.

 

 

얼굴 학습후 테스트 영상

YOLO 학습했던 내용은 추후에 추가 업로드 예정입니다.

 

2단계 : 양방향 소켓 통신 확인 (문자열 송수신)

 

소켓 프로그래밍은 도서관에서 책을빌려 병행하면서 공부했었네요

윤성우의 열혈 TCP/IP 프로그래밍

 

====== 오렌지 미디어 ======

             목록 서버1   서버2 강의시간 강의교안  PART 01 네트워크 프로그래밍의 시작    Chapter 01 네트워크 프로그래밍과 소켓의 이해        01-1. 네트워크 프로그래밍과 소켓의 이해① 27:43        01-1. 네트워크 프로그래밍과 소켓의 이해② 07:58        01-1. 네트워크 프로그래밍과 소켓의 이해③ 12:52        01-2. 리눅스 기반 파일 조작하기 27:27        01-3.

www.orentec.co.kr

 

라즈베리파이 <-> 우분투 간의 소켓 통신 확인후

YOLO에서 감지했을때 txt파일에 인식한 사람의 이름을 써주고

실시간으로 소켓으로 txt파일을 읽어서 라즈베리파이에 전송해주는 식으로 구상했습니다.

 

라즈베리파이로 출력하는 음성은 카카오 API 를 이용하여, 각 사람들의 음성파일을 만들었습니다.

 

MobaXterm을 이용한 음성파일 추출

소프트웨어적인 구현은 거의 완벽하게 진행되어있으나

하드웨어적 효율적 구현은 추후에 할예정입니다. 

 

YOLO가 인식하기에 카메라가 상당히 먼곳에 있어 인식이안되서 USB연장선으로 카메라를 땡겨왔습니다.

상당히 불편합니다..

USB 연장선을 더 추가하여 아예 벽쪽으로 몰아버리거나..

아니면 무선 영상 통신을 이용하여 영상을 받아 인식해주거나

생각좀 해봐야 할것 같네요.

posted by devtang
2020. 2. 25. 14:00 Raspberry Pi

*참고한 사이트는 게시글 하단에 남겨놓겠습니다.

 

저번 게시물에서 얼굴의 68개의 특징점을 잡아낸 알고리즘을 이용한 예제를 실행해봤습니다.

이번에는 5개의 랜드마크를 추출하는 알고리즘을 사용했습니다.

 

 

68개의 랜드마크를 추출하는 방식과 달리 ,이번 알고리즘은 

왼쪽 눈 2점, 오른쪽 눈 2점, 코 1점을 검출하여, 라즈베리파이에서 보다 더 나은 속도를 보여줍니다.

속도는 68개 추출에 비해 8-10% 향상되었으며, 잠재적으로 정확성은 조금 떨어질 수 있다고 합니다.

인식률이 상당히 좋습니다. 라즈베리파이에서 이정도 속도만 나와도 감사할 따름입니다...

실시간으로 웹캠을 통해 얼굴의 특징점이 인식됩니다.

또한

68 포인트 랜드마크 데이터 파일은 99.7MB정도였지만

5 포인트 랜드마크 데이터 파일은 9.2MB로 기존 파일에 비해 약 10배 정도 작아졌습니다.

 

구성환경으로는 전 게시물과 동일합니다.

Raspberry Pi 3B+

Picamera

OS : Raspbian Stretch 9.11

OpenCV, imutils, dlib,라이브러리 설치

 

소스코드입니다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# USAGE
 
# import the necessary packages
from imutils.video import VideoStream
from imutils import face_utils
import argparse
import imutils
import time
import dlib
import cv2
 
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p""--shape-predictor", required=True,
    help="/home/pi/Desktop/faster_facial_landmarks/shape_predictor_5_face_landmarks.dat")
args = vars(ap.parse_args())
 
# initialize dlib's face detector (HOG-based) and then create the
# facial landmark predictor
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
 
# initialize the video stream and sleep for a bit, allowing the
# camera sensor to warm up
print("[INFO] camera sensor warming up...")
#vs = VideoStream(src=0).start()
vs = VideoStream(usePiCamera=True).start() # Raspberry Pi
 
# loop over the frames from the video stream
while True:
    # grab the frame from the threaded video stream, resize it to
    # have a maximum width of 400 pixels, and convert it to
    # grayscale
    frame = vs.read()
    frame = imutils.resize(frame, width=400)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 
    # detect faces in the grayscale frame
    rects = detector(gray, 0)
 
    # check to see if a face was detected, and if so, draw the total
    # number of faces on the frame
    if len(rects) > 0:
        text = "{} face(s) found".format(len(rects))
        cv2.putText(frame, text, (1020), cv2.FONT_HERSHEY_SIMPLEX,
            0.5, (00255), 2)
 
    # loop over the face detections
    for rect in rects:
        # compute the bounding box of the face and draw it on the
        # frame
        (bX, bY, bW, bH) = face_utils.rect_to_bb(rect)
        cv2.rectangle(frame, (bX, bY), (bX + bW, bY + bH),
            (02550), 1)
 
        # determine the facial landmarks for the face region, then
        # convert the facial landmark (x, y)-coordinates to a NumPy
        # array
        shape = predictor(gray, rect)
        shape = face_utils.shape_to_np(shape)
 
        # loop over the (x, y)-coordinates for the facial landmarks
        # and draw each of them
        for (i, (x, y)) in enumerate(shape):
            cv2.circle(frame, (x, y), 1, (00255), -1)
            cv2.putText(frame, str(i + 1), (x - 10, y - 10),
                cv2.FONT_HERSHEY_SIMPLEX, 0.35, (00255), 1)
 
    # show the frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1& 0xFF
 
    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
        break
 
# do a bit of cleanup
cv2.destroyAllWindows()
 
http://colorscripter.com/info#e" target="_blank" style="color:#4f4f4ftext-decoration:none">Colored by Color Scripter
http://colorscripter.com/info#e" target="_blank" style="text-decoration:none;color:white">cs

 

자세한 소스 코드 내용은, 이곳을 참조하세요.

 

코드 복사후, 동일한 폴더 내에 데이터 파일과 파이썬파일을 넣어줍니다.

(5 포인트 얼굴 랜드마크 추출 데이터 파일은 하단의 참조사이트에서 받을 수 있습니다.)

 

저는 Desktop 에 faster_facial_landmarks 라는 폴더를 생성하여 넣어주었습니다.

터미널에 명령어를 입력해줍니다.

1
2
pi@raspberrypi:~/Desktop/faster_facial_landmarks $ python faster_facial_landmarks.py -shape_predictor_5_face_landmarks.dat
 
http://colorscripter.com/info#e" target="_blank" style="color:#4f4f4ftext-decoration:none">Colored by Color Scripter
http://colorscripter.com/info#e" target="_blank" style="text-decoration:none;color:white">cs

 

이번 게시물은 5개의 특징점을 잡아내는 예제를 실행해봤습니다.

다음엔 졸음운전을 감지하는 시스템(?) 을 포스팅 하도록 하겠습니다.

 

서투른 글 읽어주셔서 감사합니다.

 

참고사이트

(Faster) Facial landmark detector with dlib

 

(Faster) Facial landmark detector with dlib - PyImageSearch

In this tutorial you'll learn how to use dlib's 5-point facial landmark model, over 10x smaller and 8-10% faster than the original 68-point facial landmark detector.

www.pyimagesearch.com

 

posted by devtang
prev 1 2 next